

Low-Light Image Enhancement for Intelligent Analytics

Jiaying Liu

Wangxuan Institute of Computer Technology Peking University

MIPI Workshop in conjunction with CVPR 2023

Low Visibility

 Details are buried due to degraded contrast and low illumination

Intensive Noises

After simple operations,
 e.g. histogram equalization,
 noises become noticeable!

Intensive Noises

After simple operations,
 e.g. histogram equalization,
 noises become noticeable!

Non-Uniform Illumination

- Under-exposures
- Over-exposures

Problem: High-level vision in low-light scenarios

Low light degrades not only human vision but also machine vision

- Nighttime autonomous-driving
- Surveillance video analysis
- Low-light face detection

. . .

Domain Gaps Between Low and Normal Light Images

Low-Light

LIME^[TIP17] processed

Normal Light

Before HE

After HE

- Invert \rightarrow dehaze \rightarrow invert again
- Require an additional denoising process

Xiaojie Guo, Yu Li, Haibin Ling. "LIME: Low-light image enhancement via illumination map estimation", IEEE Trans. on image processing, 2017.

11

LLNet [PR17]

Deep autoencoder

Kin Gwn Lore, Adedotun Akintayo, Soumik Sarkar, "LLNet: A Deep Autoencoder Approach to Natural Low-light Image Enhancement", Pattern Recognition, 2017.

Deep Retinex Decomposition for Low-Light Enhancement

Chen Wei, Wenjing Wang, Wenhan Yang, Jiaying Liu BMVC 2018

Retinex Model + Deep Learning

• Retinex Model + Deep Learning

- Real Photography Pairs: LOw Light (LOL) Paired Dataset
 - 1000 low/normal-light image pairs
 - 500 are collected by changing only exposure time and ISO
 - Various scenes, *e.g.* houses, clubs, streets.

- Synthetic Pairs from Raw Images
 - 1000 raw images from RAISE ^[Dang-Nguyen 2015]
 - Fitting the histogram of Y channel in YCbCr to real low-light images
 - Online available: https://daooshee.github.io/BMVC2018website/

Decomposition

Low-Light Image

R by LIME

I by LIME

Normal-Light Image

Decomposition

Low-Light Image

R by NPE

Normal-Light Image

I by NPE

Decomposition

Low-Light Image

R by Retinex-Net

I by Retinex-Net

Normal-Light Image

R by Retinex-Net

I by Retinex-Net

• Experiments:

Low-Light Enhancement

Visual Results

Low-Light Input

DeHz

NPE

21

SRIE

Low-Light Datasets for High-Level Tasks

- KAIST [CVPR15]
 - Multispectral Pedestrian Detection
 - 44,871 night time annotations
 - 1,182 pedestrians in all (day and night)

S. Hwang, J. Park, N. Kim, Y. Choi and I. S. Kweon, "Multispectral pedestrian detection: Benchmark dataset and baseline," *Proc. of Conference on Computer Vision and Pattern Recognition (CVPR)*, 2015.

Low-Light Datasets for High-Level Tasks

- Exclusively Dark [CVIU19]
 - 10 light conditions for Object Detection
 - 7,363 low-light images, 12 classes

Yuen Peng Loh and Chee Seng Chan, "Getting to Know Low-light Images with The Exclusively Dark Dataset," *Computer Vision and Image Understanding (CVIU)*, 2019.

Benchmarking Low-Light Image Enhancement and Beyond

Jiaying Liu, Dejia Xu, Wenhan Yang, Minhao Fan, Haofeng Huang IJCV 2021

Comprehensive Survey

- Chronological order and classification
- Dehaze, Statistical, HE, RAW, Retinex, Compound degradation,

Deep Learning (DL) based, RAW+DL, Retinex + DL

	Deep Learning (I	DL)	Dehaz	e Statist	ical	HE	RAW	RAW+DL	Re	etinex	Retinex + DI	L Comp	ound Degradation
	DHECI [SITIS-2013]	LDR [TIP-2013]						EFF [CAIP-2017]	CAHE [ICIP-2017]	SID [CVPR-2018]		SMD [ICCV-2019]	SMOID ICCV-2019]
	BCCE [TCSVT-2014]	DGACE [ICIP-2014]				SRIE [CVPR-2016]	MF [SP-2016]	ЛЕР [ICCV-2017]	RPCE [ICASSP-2017]	Robust [TIP-2018]		STAR [arXiv-2019]	
	BPDHE [TCE-2007]	WAHE [TIP-2009]				[TIP-2016]				ICASSP-2018]		
	Dehazing [ICME-2010]	ENR [ICPR-2012]				HPPCE PCE [ICIP-2016] [VCIP-2016] PDPF NDF [TVCG-2016] [TIP-2016]	PCE [VCIP-2016]	PLM CRM [TCSVT-2017] [ICCVW-201	CRM [ICCVW-2017]	3GGMM [ICIP-2018]	PNM-WTV [ICIP-2018]	LED2Net [arXiv-2019]	
	SepDehaze [ICIP-2015]	CVC [TIP-2011]			[TVC		[arXiv-2017] [ICASSP-2017]			KinD [ACM MM-2019]	Low-lightGAN [ICIP-2019]		
	SSR MS [TIP-1997] [TIP-1	R VBR 997] [TIP-2014]	BR 2014]	RCE [ICIP-2015] [TI	SE P-2015]			LLNet [PR-2017]	MSR-Net [arXiv-2017]	MBLLEN [BMVC-2018]	RetinexNet BMVC-2018]	DeepUPE [CVPR-2019]	EnlightenGAN [arXiv-2019]
	AMSR NP [SITIS-2013] [TIP-2	E RI 013] [ICASSI	A P-2014]	[ICASSP-2015]				[VCIP-2017]			SICE [TIP-2018]	Progressive Retines [ACM MM-2019]	HybridNet [TIP-2019]
	1997-2014		2015		20	16	20	017	20)18	201	.9	

Comprehensive Survey

Table 3 An overview of low-light enhancement methods (Part 1): including histogram equalization (HE), dehaze, Retinex, statistical model-based methods

Category Methods Variables/models Main idea Publication Category Methods Variables/models Main idea HE CLAHE Contrast; local histogram; partitioned The method divides the input into regions and performs the Pizer et al. (1990) [CVBC] Statistical model CVC 2-D interpixel relationship histogram; The work enhances the cont regions adaptive histogram equalization locally with contrast interpixel contextual infor limitation, which reduces noise by partially suppressing local mutual relationship betwe histogram equalization pixels BPDHE Smoothed histogram; Histogram The mean intensity of the output image is kept to be almost the Ibrahim and Pik Kong HPPCE Local contrast measure: Discrete total A variational model is intropartition same to that of the input to prevent visual deterioration (2007) [TCE] variation contrast measure, preserve WAHE A general framework based on histogram equalization is Contrast adjustment; Noise Arici et al. (2009) [TIP] inhibition. The control of robustness; White/black stretching; presented to integrate contrast adjustment, noise robustness, PDPF Multi-exposed results The video frame is adjusted Mean-brightness preservation white/black stretching and mean-brightness preservation Guided by some visual pe BCCE Brightness compensation distortion; The work formulates an objective function consisting of Lee et al. (2014a) [TCSVT] exposed regions are integr Backlight -scaled image contrast contrast enhancement and a newly proposed distortion model manner to adjust the backlight-scaled image contrast PCE Gradient map; Just noticeable The textural coefficient is in LDR 2D histogram: Tree -like grav-level The image contrast is enhanced by amplifying the grav-level Lee et al. (2013a) [TIP] difference just noticeable difference, differences differences between adjacent pixels the optimal contrast tone 1 DHECI Intensity histogram; Saturation A differential gray-levels histogram equalization is designed Nakai et al. (2013) [SITIS] NDF Nonlinear diffusion filtering: Texture The illumination is estimate histogram for color images with two differential grav-level histograms, i.e. intensity gray-levels histogram and saturation gray-levels suppression; Surround suppression is er function to enhance the di histogram the image DGACE A novel contrast enhancement method utilizes 2D histograms Depth; 2D histograms; Adaptive Lee et al. (2014b) [ICIP] space-variant transform function to transform pixel values adaptively based on the depth PLM Environmental light; Light-scattering The initial environmental lis information attenuation surrounding function. The light-scattering attenuation EFF Weighting matrix; Camera response The weighting matrix and camera response model are Ying et al. (2017b) [CAIP] model: Best exposure ratio introduced to synthesize multi-exposure images with the best information loss constrain exposure ratio BIMEF Weighting matrix; Camera response The weighting matrix is ext CAHE Visual importance: Dark-pass filtered The method adaptively controls the contrast gain based on the Wu et al. (2017) [ICIP] model: Best exposure ratio Then, camera response mo gradients potential visual importance of intensities and pixels multi-exposure images and The method first inverts an input video and then applies a for each region Dehaze Dehazing Inverted video Dong et al. (2011) [ICME] dehazing approach on the inverted video CRM Camera response model: Exposure The method uses the inferre ENR Inverted image; Filter weighting After enhancement, the joint bilateral filter is introduced to Li et al. (2015) [ICPR] ratio map the pixel intensity to the d suppress noise estimated exposure ratio n SepDehaze The input image is decomposed into base laver and detail laver Base laver; Detail laver; Superpixel Zhang et al. (2012) [ICIP] TSNS Noise level function; Just noticeable The method first performs n and then enhance them adaptively difference using noise level function SSR Single-scale Retinex: Chromaticity It defines a practical implementation of Retinex center and Jobson et al. (1997b) [TIP] difference model to supprecoordinates; Color restoration surround Retinex, and treats the reflectance as the final 3GGMM Generalized Gaussian mixture model A three-component generali function enhanced result used to fit the histogram o MSR Multi-scale Retinex; Chromaticity It creates the enhanced results by fusing different single-scale Jobson et al. (1997a) [TIP] probabilistically character coordinates: Color restoration Retinex outputs overexposures function

Table 3 continued

- Our Dataset (VE-LOL)
 - Versatility: Evaluation of low/high-level visions
 - Authenticity: Contain real-captured paired low/normal-light images
 - **Diversity:** Contain synthesized images with diversified backgrounds/objects
 - Large-Scale: VE-LOL-H (10,940 images) is comparable to WIDER-FACE
 (32,203 images) → Enables model training

Subset	#Image	Real/Synthetic	Paired	Annotations
VE-LOL-L-Syn	1,000	Synthetic	Yes	No
VE-LOL-L-Cap	1,500	Real	Yes	No
VE-LOL-H	10,940	Real	No	Yes

• Our Dataset (VE-LOL)

 Comparison against face detection datasets and detection datasets in degraded conditions

Dataset	#Image	#Object(Face)	#Train/Test	Conditions
ExDark ^[CVIU19]	7,363	23,710	4,800/2,563	Low Light
UFDD ^[Arxiv18]	6,424	10,895	0/6,424	Complex
MALF ^[FG15]	5,250	11,931	250/5,000	Normal
WIDER Face ^[CVPR16]	32,303	393,703	12,921/16,152	Normal
VE-LOL-H	10,940	83,885	6,940/4,000	Low Light

- Our Dataset (VE-LOL)
 - Example images of VE-LOL-L-Cap

- Our Dataset (VE-LOL)
 - Example images of VE-LOL-L-Syn

- Our Dataset (VE-LOL)
 - Example images of VE-LOL-H

- Our Dataset (VE-LOL)
 - Face detection (DSFD^[CVPR19]) results on VE-LOL-H

LIME^[TIP17]

Low-Light

LIME^[TIP17]

- Our Dataset (VE-LOL)
 - Face detection (DSFD^[CVPR19]) results on enhanced VE-LOL-H

Low-Light

LIME^[TIP17]

- Our Dataset (VE-LOL)
 - Diversity in scale, pose, occlusion, appearance and illumination

- Our Dataset (VE-LOL)
 - Face resolution (FR), face number (FN) distributions

- Our Dataset (VE-LOL)
 - Face resolution (FR), face number (FN) distributions

- Benchmark of low-light enhancement result
 - Synthetic images

Metrics	Larger	input	AMSR	MSR	Dehazing	NPE	LIME	MF	SRIE	BIMEF	BPDHE	LLNET
PSNR	Larger	10.24	11.79	11.95	15.38	15.38	14.07	16.26	13.66	15.95	12.75	17.57
SSIM	Larger	0.2941	0.4027	0.5493	0.5471	0.567	0.5274	0.5998	0.5469	0.6386	0.4651	0.7388
VIF	Larger	0.2937	0.2711	0.4525	0.3772	0.4502	0.4821	0.4378	0.4351	0.4377	0.3802	0.3347
Angular Error	Smaller	25.32	45.41	17.90	20.33	19.73	19.79	18.58	19.83	16.07	25.69	13.20
LOE	Smaller	0	1546.58	1245.56	200.62	445.46	889.51	186.53	140.11	142.41	18.11	452.5
NIQE	Smaller	24.62	82347.96	28.38	30.70	29.66	30.96	30.63	27.70	27.83	27.57	18.97
BRISQUE	Smaller	21.39	95.15	38.26	42.69	43.40	46.87	44.54	33.56	34.74	41.10	20.58
ENIQA	Smaller	0.1999	0.2191	0.2405	0.1703	0.2287	0.1748	0.1962	0.1951	0.1708	0.0600	0.2116
ILNIQE	Smaller	52.88	83.69	37.72	46.07	47.79	50.85	47.75	47.06	45.98	44.48	32.76
HOSA	Larger	37.18	56.53	54.70	44.95	47.12	47.01	47.58	38.31	42.80	40.09	38.18
SSEQ	Smaller	18.69	40.32	35.00	34.16	34.34	36.53	34.40	27.42	29.14	30.23	30.79
BLIINDS-II	Larger	44.52	65.55	282.30	133.15	315.17	217.35	251.26	372.72	31.38	64.63	133.55
Perceptual 1	Smaller	20522	23648	25595	15392	16877	28213	13695	13213	11781	18514	11138
Perceptual 4	Smaller	3482	4397	4124	3904	3618	4745	3308	3111	2972	3899	3161

- Benchmark of low-light enhancement result
 - Real images

Metrics	Larger	JED	RetinexNet	CVC	DHECI	HE	LDR	Robust	SICE	WAHE	KinD	DeepUPE
PSNR	Larger	16.73	14.68	13.01	14.24	13.26	15.11	15.78	18.06	15.07	18.42	13.19
SSIM	Larger	0.6817	0.5252	0.4469	0.5312	0.5238	0.6114	0.6378	0.7094	0.6309	0.7658	0.4902
VIF	Larger	0.3744	0.3482	0.3501	0.4299	0.4388	0.4681	0.375	0.3747	0.4377	0.4381	0.4222
Angular Error	Smaller	13.02	21.32	28.83	19.58	17.53	19.33	16.06	12.42	17.08	11.67	22.7
LOE	Smaller	405.38	808.58	243.59	15.60	303.77	231.21	466.72	439.61	200.02	363.29	262.05
NIQE	Smaller	23.07	31.52	25.11	30.58	29.53	30.36	24.89	24.36	27.75	21.38	27.68
BRISQUE	Smaller	28.51	55.43	34.08	50.23	45.98	40.48	41.99	30.06	39.49	23.30	29.70
ENIQA	Smaller	0.1293	0.4049	0.0659	0.0699	0.2316	0.0941	0.1837	0.147	0.0549	0.1118	0.1906
ILNIQE	Smaller	35.53	47.27	36.08	51.63	18.32	36.42	46.32	33.85	36.13	29.01	48.99
HOSA	Larger	36.53	55.47	37.99	47.11	44.86	44.02	43.22	30.57	43.18	32.98	34.88
SSEQ	Smaller	18.39	38.88	23.41	37.29	35.38	24.39	26.58	26.36	22.29	23.19	25.45
BLIINDS-II	Larger	184.65	43.53	78.82	97.16	163.22	109.89	341.5	130.84	161.86	44.52	89.04
Perceptual 1	Smaller	11028	20333	26335	25581	25664	14901	13211	9871	13333	9735	14108
Perceptual 4	Smaller	2998	4341	4752	4410	4423	3290	3201	2838	3180	2434	3184

- Benchmark of low-light enhancement result
 - Running Time

Method	MSR	Dehazing	BPDHE	NPE	LIME	MF	SRIE	BIMEF	JED	AMSR
Running Time (s)	1.4160	0.9574	0.7506	8.1812	1.2454	1.5136	6.7943	0.1761	1.9646	0.7592
Method	LLNet	RetinexNet	CVC	DHECI	HE	LDR	Robust	SICE	WAHE	KinD

- Example of enhanced results
 - Real image from VE-LOL-L-Real

(a) Input

(f) JED

(m) SRIE

(n) Robust

42

(e) GT

(c) BIMEF

(g) WAHE

(s) KinD

(q) NPE

(t) DeepUPE

(i) MF

(i) MSR

(k) LLNet

• Evaluation results of pretrained baseline on original and enhanced images of the proposed VE-LOL-H dataset

• Evaluation results of pretrained baseline on original and enhanced images of the proposed VE-LOL-H dataset

Comparison of detection accuracies for different face scales

Comparison of detection accuracies for different face scales

Enhancement and Detection Pipeline

47

• IDEA 1: Prior Modeling + Multiple Exposure Fusion

• IDEA 2: Share Information between Two Stages

- Prior Modeling + Multiple Exposure Fusion
 - Half Cyclic Constrained (HCC) Enhancement
 - Multi-Path Fusion Network

- Prior Modeling + Multiple Exposure Fusion
 - Enhancement

$$L_{\text{Enhance}} = \gamma \left(\|\hat{x} - x\| - \alpha \text{SSIM}\left(\hat{x}, x\right) \right) + L_{\text{Adv}}(\hat{x}, x)$$

Cycle Consistency with a learned degradation model

 $L_{\text{Consistency}} = \|\hat{y} - y\|$

Multi-Path Fusion: concat features and feed them into a box regression network

- Share Information between Two Stages
 - FishNet aggregates multi-scale context information
 - Skip Connections: use features from enhancement stage to guide

Experiments

The mAP scores of different methods

Method	mean Average Precision
Pretrained DSFD	13.6
Finetuned DSFD	44.3
MF + Pretrained DSFD	39.3
MF + Finetuned DSFD	46.8
Proposed w/o Multiple Detection Loss	48.0
Proposed	48.9

51

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection

52

Wenjing Wang, Wenhan Yang, Jiaying Liu CVPR 2021

Face detection under low light circumstance

- Naive solution:
 - Construct a low light face detection dataset & train a corresponding new model
- Drawbacks:
 - Cost of human and financial resources
 - Poor robustness and scalability

Face detection under low light circumstance

Our Method: Adapt the model from normal light to low light

- Gaps between normal light and low light
 - Pixel-level appearances (Low-level gap)
 - E.g. illumination, noise pattern, and color cast
 - Object-level semantics (High-level gap)
 - E.g. the existence of street lights, vehicle headlights, and advertisement boards

DSFD

• Our solution: Joint low-level and high-level adaptation

LIME + DSFD

Our HLA-Face

Reviewing adaptive low light detection techniques

- Enhancement and darkening only consider the pixel-level gap
- Feature adaptation methods try to fill the whole gap in one step

• We instead consider joint low-level and high-level adaptation

• We instead consider joint low-level and high-level adaptation

Overall network architecture

Bidirectional low-level adaptation

- Brightening: nonlinear curve mapping
- Noise Synthesis: supervised adversarial learning
- Color Jittering

- Bidirectional low-level adaptation
 - Comparison results of pixel-level transferring

WIDER FACE

CycleGAN

CycleGAN (enhanced)

MUNIT

CUT

Our Hnoise

Our *E*(*L*)

62

Multi-task high-level adaptation

• Benchmarking state-of-the-art methods

Category	Method	mAP (%)
	Faster-RCNN	1.7
	SSH	6.9
	RetinaFace	8.6
Face Detection	SRN	9.0
Face Detection	SFA	9.3
	PyramidBox	12.5
	Small Hard Face	16.1
	DSFD	16.1

• Benchmarking state-of-the-art methods

Category	Method	mAP (%)	Category	Method	mAP (%)
Enhancement	Zero-DCE	37.7		SICE	4.7
(with Small Hard Face)	MF	38.3		RetinexNet	12.0
				KinD	15.8
Category	Method	mAP (%)	Enhancement (with DSFD)	EnlightenGAN	31.3
Enhancement	EnlightenGAN +	20.8	(,	LIME	40.7
(with DSFD)	Zero-DCE +	37.3		Zero-DCE	41.3
+ denotes retrained with	DARKFACE			MF	41.4

• Benchmarking state-of-the-art methods

Category	Method	mAP (%)	Category	Method	mAP (%)
Darkening (with DSED)	MUNIT	29.7		OSHOT	25.4
	CycleGAN	31.9	Unsupervised DA (with DSFD)	Progressive DA	28.5
(CUT	32.7	, , , , , , , , , , , , , , , , , , , ,	Pseudo Labeling	35.1

Best results from each category

Category	Method	mAP (%)
Face Detection	DSFD	16.1
Enhancement	DSFD + MF	41.4
Darkening	DSFD + CUT	32.7
Unsupervised DA	DSFD + Pseudo Labeling	35.1

Category	Method	mAP (%)
	Ours	44.4
Fully Supervised	Fine-tuned DSFD	46.0

• Our performance

Subjective Results

68

Applications

- Improve fully supervised model
 - DSFD with labels and our adaptation, mAP $0.460 \rightarrow 0.486$
- Transfer from COCO to ExDark

	AP (%)	AP 50 (%)	AP 75 (%)
original	29.261	59.784	24.538
w/ Ours	30.056	60.746	25.835

Unsupervised Low-Light Adaption

Self-Aligned Concave Curve: Illumination Enhancement for Unsupervised Adaptation

Wenjing Wang, Zhengbo Xu, Haofeng Huang, Jiaying Liu ACM MM 2022

Aim and Challenge

• Existing works:

Categories	Illumination Adjustment	High-Level Vision
Low-light enhancement e.g. Zero-DCE (CVPR-20), RUAS (CVPR-21)	\checkmark	×
Domain adaptation <i>e.g.</i> HLA-Face (CVPR-21), CIConv (ICCV-21)	×	\checkmark
Our Target	\checkmark	\checkmark

Our Method: First to propose a learnable **pure** illumination enhancement model for high-level vision

Aim and Challenge

• **Challenge:** How to restore underexposed images/videos from the perspective of machine vision?

Our approach consists of two aspects:

- **Network:** an illumination enhancement model which can maximize the model's abilities while being easy to learn
- **Training Strategy:** guide the model to adjust illumination from the perspective of machine vision
Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input I_L

$$\hat{I}_L = g(I_L)$$

We assume that $g(\cdot)$ should:

- Pass (0,0) and (1,1)
- Increase monotonically
- Be spatially shared <
- Be concave

Ignoring spatial variations like lens fall-off and signal-dependent noise

Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input I_L

We assume that $g(\cdot)$ should:

- Pass (0,0) and (1,1)
- Increase monotonically
- Be spatially shared
- Be concave

Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input I_L

 $\hat{I}_L = g(I_L)$

We assume that $g(\cdot)$ should:

- Pass (0,0) and (1,1)
- Increase monotonically
- Be spatially shared
- Be concave

Network: Deep Concave Curve

Step 1. Predicts a non-negative minus second derivative $-\nabla^2 c$ Step 2. Integrates and normalizes $-\nabla^2 c$ into a concave curve g

Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input I_L

We assume that $g(\cdot)$ should:

- Pass (0,0) and (1,1)
- Increase monotonically
- Be spatially shared
- Be concave

Let *g* be a mapping from original pixel values to new pixel values (32, 49, 64) 235 (12, 15, 22) 195 32 (195, 200, 196) (129, 124, 100) 12 129 205 g_R Original Enhanced

Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input I_L

We assume that $g(\cdot)$ should:

- Pass (0,0) and (1,1)
- Increase monotonically
- Be spatially shared
- Be concave

Independent g for each color channel, *i.e.*, g_R , g_G , g_B

Training Strategy: Asymmetric Self-supervised Alignment

Idea: employ high-level vision models as guidance

Existing strategies:

- Discrepancy metrics
- Adversarial learning

Bring extra semantic supervision, which can mislead our model and make training hard to converge

We use: Cross-domain self-supervised pretext tasks

Training Strategy: Asymmetric Self-supervised Alignment

Pretrained and fixed-weight feature extractor

Step 1. Train a pretext head on normal light images

Training Strategy: Asymmetric Self-supervised Alignment

Pretrained and fixed-weight feature extractor

Step 1. Train a pretext head on normal light images

Training Strategy: Asymmetric Self-supervised Alignment

Pretrained and fixed-weight feature extractor

Step 1. Train a pretext head on normal light images

Training Strategy: Asymmetric Self-supervised Alignment

Pretrained and fixed-weight feature extractor

Step 1. Train a pretext head on normal light images

Training Strategy: Asymmetric Self-supervised Alignment

Pretext task: rotated jigsaw puzzles

First rotate the input image by random angles, then apply 3×3 jigsaw shuffling

and ask the network to recognize the permutation

Network + Training Strategy: Self-Aligned Concave Curve (SACC)

Train: given a pretrained normal-light downstream model, use its feature backbone to train our deep concave curve

Test: enhance the input image and apply the downstream model

Properties:

- Blind to both normal and low-light annotations
- Does not need to adjust the downstream model

Network + Training Strategy: Self-Aligned Concave Curve (SACC)

Can SACC solve color bias?

Yes, SACC has independent curves for each color channel.

How to solve camera noise?

Improving the robustness to noise is much easier than noise removal.

We adopt pseudo labeling to adapt the downstream model.

This advanced version is called SACC+.

Analysis: Why Self-Supervised Alignment?

Table 1: Effects of different learning strategies for guiding our illumination enhancement model.

Category	Strategy	mAP (%)	
Baseline	-	16.09	
Discrepancy Metrics	CMD [68] MMD [2]	28.90 33.76	
Adversarial Learning	al Learning LSGAN [43]		
Self-Supervised Learning	MoCo [16] Rotation [12] Jigsaw [46] Rotated Jigsaw (proposed)	38.46 39.59 41.01 41.31	

Analysis: Why Deep Concave Curve?

Table 2: Effects of different low-light enhancement backbones under our asymmetric self-supervised strategy.

Category	Method	mAP (%)	
Baseline	-	16.09	
	EnlightenGAN [27]	18.42	
Other	Zero-DCE [14]	25.36	
	Gamma Correction x^{γ}	38.25	
	No Constraint	12.44	
Ours	$\nabla g \ge 0$	34.40	
	$\nabla g \ge 0$ and $\nabla^2 g \le 0$ (proposed)	41.31	
	$\nabla g \ge 0, \nabla^2 g \le 0, ext{and} \nabla^3 g \ge 0$	40.74	

Analysis: Why Deep Concave Curve?

Analysis: Why Deep Cond 0.75 Table 2: Effects of different 0.00 0.25 0.50 bones under our asymmetric (a) No Constraint (b) $\nabla g \geq 0$ Category Method Baseline EnlightenGAN (c) $\nabla g \ge 0$ and $\nabla^2 g \le 0$ (d) $\nabla g \ge 0$, $\nabla^2 g \le 0$ and $\nabla^3 g \ge 0$ Zero-DCE [14] Other Gamma Correct Figure 4: Low-light enhancement results (left) and curve shapes (right) under different curve form constraints. No Constraint $\nabla q \ge 0$ 34.40Ours $\nabla g \ge 0$ and $\nabla^2 g \le 0$ (proposed) 41.31 $\nabla g \ge 0, \nabla^2 g \le 0$, and $\nabla^3 q \ge 0$. 40.74

90

Analysis: Why Deep Concave Curve?

Table 3: Comparison with other low-light enhancement networks under different training strategies.

Method	Version	mAP (%)	
Baseline	-	16.09	
EnlightenGAN [27]	Original Retrained Original + Eq. (3)	28.85 20.08 32.88	
Zero-DCE [14]	Original Retrained Original + Eq. (3)	38.32 32.53 40.54	
SACC (Ours)	-	41.31	

Analysis: Why Deep Concave Curve?

Table 4: Effects of denoising enhanced low-light images and the proposed advanced version SACC+.

Method	Version	mAP (%)
Baseline	SACC	41.31
Denoising	SACC + BM3D [7] SACC + Neighbor2Neighbor [21]	24.51 40.54
Proposed	SACC+	45.51

Settings

- Low-light Object Classification
- Dark Face Detection
- Low-light Action Recognition
- Optical Flow Estimation in the Dark
- Subjective Human Vision

Low-light Object Classification

Figure 5: Example result for classification. The original image is wrongly categorized as "Chair" with a confidence of 0.98, after enhancement, it can be correctly recognized as "Cat". † denotes that the low-light enhancement model is retrained.

Category	Method	Top-1 (%)	
Baseline	ResNet-18 [17]	55.04	
Fully Supervised	Finetuned ResNet-18 [17]	71.52	
	RetinexNet [60]	44.72	
	Zero-DCE† [14]	50.80	
	EnlightenGAN [27]	57.76	
	Zero-DCE++ [34]	58.56	
	MF [10]	59.20	
Low-Light	KinD [70]	59.28	
Enhancement	LIME [15]	59.44	
	Zero-DCE [14]	59.44	
	RUAS† [39]	59.84	
	EnlightenGAN† [27]	60.24	
	LLFlow [59]	60.72	
	SACC (Ours)	61.44	
	CMD [68]	55.92	
Unsupervised	AdaBN [36]	59.68	
Domain	DANN [11]	59.76	
Adaptation	CIConv [32]	60.96	
_	SACC+ (Ours)	63.92	

Dark Face Detection

† denotes that the low-light enhancement model is retrained.

Category	Method	mAP (%)		Category	Method	mAP (%)	
Baseline	DSFD [35]	16.09			CIConv [32]	4.40	
Fully Supervised	Finetuned DSFD [35]	45.99		Unsupervised	Unsupervised G	OSHOT [8] Progressive DA [18]	25.38 28.47
	RetinexNet [60]	12.04	-	Domain	Pseudo Labeling [23]	35.07	
	KinD [70]	15.84		Adaptation	HLA-Face [58]	44.44	
	EnlightenGAN† [27]	20.77			SACC+ (Ours)	46.91	
	EnlightenGAN [27]	31.31			1	1	
	Zero-DCE † [14]	37.30					
Low-Light	LLFlow [59]	37.41					
Enhancement	RUAS† [39]	38.36					
	LIME [15]	40.71					
	Zero-DCE++ [34]	40.90					
	Zero-DCE [14]	41.27					
	MF [10]	41.43					
	SACC (Ours)	44.57					

Dark Face Detection

(f) EnlightenGAN

(g) RUAS†

(h) HLA-Face

(i) CIConv

(j) SACC (Ours)

Low-Light Action Recognition

Original	StableLLVE [69]	SMOID [25]	SACC (Ours)
47.14%	49.70%	50.18%	52.13%

97

Low-Light Action Recognition

	Exp-2	Exp-3	Exp-4	Exp-5	AVG
Original	10.21	11.90	14.36	17.82	13.57
Zheng <i>et al.</i> [71] SACC (Ours)	9.04 6.70	8.81 7.03	8.78 7.57	9.31 8.47	8.99 7.44

Take Home Messages

- Low-light condition: low visibility, low contrast, intensive noise
- Challenges: visual unpleasure (Humans), system failure (Machines)
- Human Vision: Robust Enhancement
 - Structural deep prior \rightarrow deep Retinex
 - Dataset and benchmarking
- Machine Vision: Joint Enhancement and Downstream Tasks
 - Joint high-level and low-level adaptation
 - Self-aligned Concave Curve

THANKS

Jiaying Liu

Peking University

liujiaying@pku.edu.cn