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◼ Low Visibility

◼ Details are buried due to 

degraded contrast and 

low illumination

Low-Light Degradation 2



◼ Intensive Noises

◼ After simple operations, 

e.g. histogram equalization,

noises become noticeable!

Low-Light Degradation 3



Low-Light Degradation 4

◼ Intensive Noises

◼ After simple operations, 

e.g. histogram equalization,

noises become noticeable!



◼ Non-Uniform Illumination

◼ Under-exposures

◼ Over-exposures

Low-Light Degradation 5



6Low-Light Degradation

◼ Problem: High-level vision in low-light scenarios

Low light degrades not only human vision but also machine vision

- Nighttime autonomous-driving

- Surveillance video analysis

- Low-light face detection

…



◼ Domain Gaps Between Low and Normal Light Images

Low-Light LIME[TIP17] processed Normal Light

Low-Light Degradation 7



• Enhance the contrast

• Over-enhancement / under-enhancement

• Amplify the noise

Before HE After HE

Representative Work 8

Histogram 

Equalization



• Inverted low-light images Vs. Hazy images

• Invert → dehaze → invert again

• Require an additional denoising process

Low-Light Inversion Dehazing Result

Dehazing Method

Representative Work 9

Histogram 

Equalization



Retinex-Based Methods

• Retinex decomposition

• Generate results

S R L= 

1

enhanceS R L= 

Gamma 

Correction

Low-Light Image

Enhanced Image

Illumination (L)

Reflectance (R)

Representative Work 10

Retinex

Model

Dehazing Method

Histogram 

Equalization

Xiaojie Guo, Yu Li, Haibin Ling. "LIME: Low-light image enhancement via illumination map estimation",  IEEE Trans. on image processing, 2017.



Low-Light Image Dataset

Regression Model OutputInput

Low-Light Image Dataset

…

Representative Work 11

Retinex

Model

Learning-

Based Method

Dehazing Method

Histogram 

Equalization



LLNet [PR17]

• Deep autoencoder

Kin Gwn Lore, Adedotun Akintayo, Soumik Sarkar, "LLNet: A Deep Autoencoder Approach to Natural Low-light Image Enhancement", Pattern Recognition, 2017.
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Deep Retinex Decomposition

Deep Retinex Decomposition for Low-Light Enhancement

Chen Wei, Wenjing Wang, Wenhan Yang, Jiaying Liu  BMVC 2018
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Deep Retinex Decomposition

Low-Light Image Dataset

OutputInput

Retinex

Decomposition
Adjusted

Decomposition

Regression

Model

…

• Retinex Model + Deep Learning
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Deep Retinex Decomposition 15

• Retinex Model + Deep Learning



Deep Retinex Decomposition

• Real Photography Pairs: LOw Light (LOL) Paired Dataset

• 1000 low/normal-light image pairs

• 500 are collected by changing only exposure time and ISO

• Various scenes, e.g. houses, clubs, streets.
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Deep Retinex Decomposition

• Synthetic Pairs from Raw Images

• 1000 raw images from RAISE [Dang-Nguyen 2015]

• Fitting the histogram of Y channel in YCbCr to real low-light images

• Online available: https://daooshee.github.io/BMVC2018website/
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Deep Retinex Decomposition 18

Low-Light Image R by LIME I by LIME

Normal-Light Image R by LIME I by LIME

• Decomposition



Deep Retinex Decomposition 19

Low-Light Image R by NPE I by NPE

Normal-Light Image R by NPE I by NPE

• Decomposition



Deep Retinex Decomposition 20

Low-Light Image R by Retinex-Net I by Retinex-Net

Normal-Light Image R by Retinex-Net I by Retinex-Net

• Decomposition



Deep Retinex Decomposition 21

• Experiments:

Low-Light Enhancement

• Visual Results

Low-Light Input DeHz NPE

LIME SRIE Retinex-Net
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Retinex

Model

Learning-

Based Method

Enhancement and 

Understanding

Dehazing Method

Histogram 

Equalization



• KAIST [CVPR15]

• Multispectral Pedestrian Detection

• 44,871 night time annotations

• 1,182 pedestrians in all (day and night)

S. Hwang, J. Park, N. Kim, Y. Choi and I. S. Kweon, "Multispectral pedestrian detection: Benchmark dataset and baseline," Proc. of  

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Low-Light Datasets for High-Level Tasks 23



• Exclusively Dark [CVIU19]

• 10 light conditions for Object Detection

• 7,363 low-light images, 12 classes

Yuen Peng Loh and Chee Seng Chan, "Getting to Know Low-light Images with The Exclusively Dark Dataset," Computer Vision and Image 

Understanding (CVIU), 2019.

Low-Light Datasets for High-Level Tasks 24



Retinex

Model

Learning-

Based Method

Enhancement and 

Understanding

Dataset 

Summary
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Dehazing Method

Histogram 

Equalization



Our Dataset and Benchmark

Benchmarking Low-Light Image Enhancement and Beyond

Jiaying Liu, Dejia Xu, Wenhan Yang, Minhao Fan, Haofeng Huang IJCV 2021
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Our Dataset and Benchmark 27

• Comprehensive Survey

- Chronological order and classification

- Dehaze, Statistical, HE, RAW, Retinex, Compound degradation,

Deep Learning (DL) based, RAW+DL, Retinex + DL
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• Comprehensive Survey



Our Dataset and Benchmark 29

• Our Dataset (VE-LOL)

• Versatility: Evaluation of low/high-level visions

• Authenticity: Contain real-captured paired low/normal-light images

• Diversity: Contain synthesized images with diversified backgrounds/objects

• Large-Scale: VE-LOL-H (10,940 images) is comparable to WIDER-FACE 

(32,203 images) → Enables model training

Subset #Image Real/Synthetic Paired Annotations

VE-LOL-L-Syn 1,000 Synthetic      Yes    No        

VE-LOL-L-Cap 1,500 Real           Yes    No        

VE-LOL-H     10,940 Real           No     Yes



Our Dataset and Benchmark 30

• Our Dataset (VE-LOL)

• Comparison against face detection datasets and detection datasets in 

degraded conditions

Dataset #Image #Object(Face) #Train/Test Conditions

ExDark[CVIU19] 7,363 23,710 4,800/2,563 Low Light

UFDD[Arxiv18] 6,424 10,895 0/6,424 Complex

MALF[FG15] 5,250 11,931 250/5,000 Normal

WIDER Face[CVPR16] 32,303 393,703 12,921/16,152 Normal

VE-LOL-H 10,940 83,885 6,940/4,000 Low Light



Our Dataset and Benchmark 31

• Our Dataset (VE-LOL)

• Example images of VE-LOL-L-Cap
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• Our Dataset (VE-LOL)

• Example images of VE-LOL-L-Syn
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• Our Dataset (VE-LOL)

• Example images of VE-LOL-H

Low-Light LIME[TIP17] Low-Light LIME[TIP17]



Our Dataset and Benchmark 34

• Our Dataset (VE-LOL)

• Face detection (DSFD[CVPR19]) results on VE-LOL-H

Low-Light LIME[TIP17] Low-Light LIME[TIP17]



Our Dataset and Benchmark 35

• Our Dataset (VE-LOL)

• Face detection (DSFD[CVPR19]) results on enhanced VE-LOL-H 

Low-Light LIME[TIP17] MSR[TIP97] MF[SP16]



Our Dataset and Benchmark 36

• Our Dataset (VE-LOL)

• Diversity in scale, 

pose, occlusion, 

appearance and 

illumination



Our Dataset and Benchmark 37

• Our Dataset (VE-LOL)

• Face resolution (FR), face number (FN) distributions



Our Dataset and Benchmark 38

• Our Dataset (VE-LOL)

• Face resolution (FR), face number (FN) distributions



Our Dataset and Benchmark 39

• Benchmark of low-light enhancement result 

• Synthetic images

Metrics Larger input AMSR MSR Dehazing NPE LIME MF SRIE BIMEF BPDHE LLNET

PSNR Larger 10.24 11.79 11.95 15.38 15.38 14.07 16.26 13.66 15.95 12.75 17.57

SSIM Larger 0.2941 0.4027 0.5493 0.5471 0.567 0.5274 0.5998 0.5469 0.6386 0.4651 0.7388

VIF Larger 0.2937 0.2711 0.4525 0.3772 0.4502 0.4821 0.4378 0.4351 0.4377 0.3802 0.3347

Angular Error Smaller 25.32 45.41 17.90 20.33 19.73 19.79 18.58 19.83 16.07 25.69 13.20

LOE Smaller 0 1546.58 1245.56 200.62 445.46 889.51 186.53 140.11 142.41 18.11 452.5

NIQE Smaller 24.62 82347.96 28.38 30.70 29.66 30.96 30.63 27.70 27.83 27.57 18.97

BRISQUE Smaller 21.39 95.15 38.26 42.69 43.40 46.87 44.54 33.56 34.74 41.10 20.58

ENIQA Smaller 0.1999 0.2191 0.2405 0.1703 0.2287 0.1748 0.1962 0.1951 0.1708 0.0600 0.2116

ILNIQE Smaller 52.88 83.69 37.72 46.07 47.79 50.85 47.75 47.06 45.98 44.48 32.76

HOSA Larger 37.18 56.53 54.70 44.95 47.12 47.01 47.58 38.31 42.80 40.09 38.18

SSEQ Smaller 18.69 40.32 35.00 34.16 34.34 36.53 34.40 27.42 29.14 30.23 30.79

BLIINDS-II Larger 44.52 65.55 282.30 133.15 315.17 217.35 251.26 372.72 31.38 64.63 133.55

Perceptual 1 Smaller 20522 23648 25595 15392 16877 28213 13695 13213 11781 18514 11138

Perceptual 4 Smaller 3482 4397 4124 3904 3618 4745 3308 3111 2972 3899 3161



Our Dataset and Benchmark 40

• Benchmark of low-light enhancement result 

• Real images

Metrics Larger JED RetinexNet CVC DHECI HE LDR Robust SICE WAHE KinD DeepUPE

PSNR Larger 16.73 14.68 13.01 14.24 13.26 15.11 15.78 18.06 15.07 18.42 13.19

SSIM Larger 0.6817 0.5252 0.4469 0.5312 0.5238 0.6114 0.6378 0.7094 0.6309 0.7658 0.4902

VIF Larger 0.3744 0.3482 0.3501 0.4299 0.4388 0.4681 0.375 0.3747 0.4377 0.4381 0.4222

Angular Error Smaller 13.02 21.32 28.83 19.58 17.53 19.33 16.06 12.42 17.08 11.67 22.7

LOE Smaller 405.38 808.58 243.59 15.60 303.77 231.21 466.72 439.61 200.02 363.29 262.05

NIQE Smaller 23.07 31.52 25.11 30.58 29.53 30.36 24.89 24.36 27.75 21.38 27.68

BRISQUE Smaller 28.51 55.43 34.08 50.23 45.98 40.48 41.99 30.06 39.49 23.30 29.70

ENIQA Smaller 0.1293 0.4049 0.0659 0.0699 0.2316 0.0941 0.1837 0.147 0.0549 0.1118 0.1906

ILNIQE Smaller 35.53 47.27 36.08 51.63 18.32 36.42 46.32 33.85 36.13 29.01 48.99

HOSA Larger 36.53 55.47 37.99 47.11 44.86 44.02 43.22 30.57 43.18 32.98 34.88

SSEQ Smaller 18.39 38.88 23.41 37.29 35.38 24.39 26.58 26.36 22.29 23.19 25.45

BLIINDS-II Larger 184.65 43.53 78.82 97.16 163.22 109.89 341.5 130.84 161.86 44.52 89.04

Perceptual 1 Smaller 11028 20333 26335 25581 25664 14901 13211 9871 13333 9735 14108

Perceptual 4 Smaller 2998 4341 4752 4410 4423 3290 3201 2838 3180 2434 3184



Our Dataset and Benchmark 41

• Benchmark of low-light enhancement result 

• Running Time

Method MSR Dehazing BPDHE NPE LIME MF SRIE BIMEF JED AMSR

Running Time (s) 1.4160 0.9574 0.7506 8.1812 1.2454 1.5136 6.7943 0.1761 1.9646 0.7592

Method LLNet RetinexNet CVC DHECI HE LDR Robust SICE WAHE KinD

Running Time (s) 4.0210 0.4690 1.2660 25.336 0.2166 0.3602 44.6750 0.8075 1.4023 3.0031



Our Dataset and Benchmark 42

• Example of enhanced results

• Real image from VE-LOL-L-Real



Our Dataset and Benchmark 43

• Evaluation results of pretrained baseline on original and enhanced 

images of the proposed VE-LOL-H dataset
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• Evaluation results of pretrained baseline on original and enhanced 

images of the proposed VE-LOL-H dataset



Our Dataset and Benchmark 45

• Comparison of detection accuracies for different face scales

Small Face Medium Face Large Face
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• Comparison of detection accuracies for different face scales

Low illumination of face Medium illumination of face High illumination of face



Joint Enhancement and Face Detection 47

Enhancement and Detection Pipeline

Encoder Decoder Extraction Fusion
Box 

Prediction

Enhancement Face Detection

Extraction Fusion
Box 

Prediction

Enhance

Degrade

Extraction Fusion
Box 

Prediction
Encoder Decoder

• IDEA 1: Prior Modeling + Multiple Exposure Fusion

• IDEA 2: Share Information between Two Stages



Joint Enhancement and Face Detection 48

• Prior Modeling + Multiple Exposure Fusion

• Half Cyclic Constrained (HCC) Enhancement

• Multi-Path Fusion Network



Joint Enhancement and Face Detection 49

• Prior Modeling + Multiple Exposure Fusion

• Enhancement 

• Cycle Consistency with a learned degradation model

• Multi-Path Fusion: concat features and feed them into a box 

regression network



Joint Enhancement and Face Detection 50

• Share Information between Two Stages

• FishNet aggregates multi-scale context information

• Skip Connections: use features from enhancement stage to guide 

detection stage

Enhance

Box 

Prediction
Fusion

Decoder EncoderEncoder



Joint Enhancement and Face Detection 51

Experiments

• The mAP scores of different methods

Method mean Average Precision

Pretrained DSFD 13.6

Finetuned DSFD 44.3

MF + Pretrained DSFD 39.3

MF + Finetuned DSFD 46.8

Proposed w/o Multiple Detection Loss 48.0

Proposed 48.9



Unsupervised Low-Light Face Detection

HLA-Face: Joint High-Low Adaptation

for Low Light Face Detection 

Wenjing Wang, Wenhan Yang, Jiaying Liu CVPR 2021

52



Unsupervised Low-Light Face Detection 53

Face detection under low light circumstance

• Naive solution: 

• Construct a low light face detection dataset & train a 

corresponding new model 

• Drawbacks:

• Cost of human and financial resources

• Poor robustness and scalability



Unsupervised Low-Light Face Detection 54

Face detection under low light circumstance

Our Method: Adapt the model from normal light to low light



Unsupervised Low-Light Face Detection 55

• Gaps between normal light and low light

• Pixel-level appearances (Low-level gap)

• E.g. illumination, noise pattern, and color cast

• Object-level semantics (High-level gap)

• E.g. the existence of street lights, vehicle headlights, and 

advertisement boards



Unsupervised Low-Light Face Detection 56

• Our solution: Joint low-level and high-level adaptation

DSFD LIME + DSFD Our HLA-Face



Unsupervised Low-Light Face Detection 57

• Reviewing adaptive low light detection techniques

• Enhancement and darkening only consider the pixel-level gap

• Feature adaptation methods try to fill the whole gap in one step



Unsupervised Low-Light Face Detection 58

• We instead consider joint low-level and high-level adaptation



Unsupervised Low-Light Face Detection 59

• We instead consider joint low-level and high-level adaptation



Unsupervised Low-Light Face Detection 60

• Overall network architecture



Unsupervised Low-Light Face Detection 61

• Bidirectional low-level adaptation

• Brightening: nonlinear curve mapping 

• Noise Synthesis: supervised adversarial learning

• Color Jittering



Unsupervised Low-Light Face Detection 62

• Bidirectional low-level adaptation

• Comparison results of pixel-level transferring



Unsupervised Low-Light Face Detection 63

• Multi-task high-level adaptation



Unsupervised Low-Light Face Detection 64

• Benchmarking state-of-the-art methods
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• Benchmarking state-of-the-art methods
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• Benchmarking state-of-the-art methods



Unsupervised Low-Light Face Detection 67

• Best results from each category • Our performance



Unsupervised Low-Light Face Detection 68

• Subjective Results

(e)



Unsupervised Low-Light Face Detection 69

• Applications

• Improve fully supervised model

• DSFD with labels and our adaptation, mAP 0.460 → 0.486

• Transfer from COCO to ExDark



Unsupervised Low-Light Adaption

Self-Aligned Concave Curve: Illumination Enhancement for 

Unsupervised Adaptation 

Wenjing Wang, Zhengbo Xu, Haofeng Huang, Jiaying Liu ACM MM 2022
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• Existing works:

Our Method: First to propose a learnable pure illumination enhancement 

model for high-level vision

Categories
Illumination

Adjustment

High-Level

Vision

Low-light enhancement

e.g. Zero-DCE (CVPR-20),  RUAS (CVPR-21)
√ ×

Domain adaptation

e.g. HLA-Face (CVPR-21),  CIConv (ICCV-21) 
× √

Our Target √ √

71Aim and Challenge



• Challenge:  How to restore underexposed images/videos from the 

perspective of machine vision?

Our approach consists of two aspects:

• Network:  an illumination enhancement model which can maximize 

the model's abilities while being easy to learn

• Training Strategy:  guide the model to adjust illumination from the 

perspective of machine vision

72Aim and Challenge



73Method

‣ Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input 𝐼𝐿

i.e. 𝐼
̂

𝐿 = 𝑔(𝐼𝐿)

We assume that g(·) should:

- Pass (0,0) and (1,1)

- Increase monotonically

- Be spatially shared

- Be concave

Ignoring spatial variations like lens 

fall-off and signal-dependent noise
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‣ Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input 𝐼𝐿

i.e. 𝐼
̂

𝐿 = 𝑔(𝐼𝐿)

We assume that g(·) should:

- Pass (0,0) and (1,1)

- Increase monotonically

- Be spatially shared

- Be concave

Most camera response functions are concave

Left figure: real camera CRFs from the DoRF dataset.

Right figure: the heat map of second-order derivatives in DoRF.
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‣ Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input 𝐼𝐿

i.e. 𝐼
̂

𝐿 = 𝑔(𝐼𝐿)

We assume that g(·) should:

- Pass (0,0) and (1,1)

- Increase monotonically

- Be spatially shared

- Be concave

How to design a neural network that 

can follow these constraints?

g should be a Concave Curve

Method
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‣ Network: Deep Concave Curve

Step 1. Predicts a non-negative minus second derivative −𝛻2𝑐
Step 2. Integrates and normalizes −𝛻2𝑐 into a concave curve 𝑔

Method



‣ Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input 𝐼𝐿

i.e. 𝐼
̂

𝐿 = 𝑔(𝐼𝐿)

We assume that g(·) should:

- Pass (0,0) and (1,1)

- Increase monotonically

- Be spatially shared

- Be concave

77

Let 𝑔 be a mapping from original pixel 

values to new pixel values

Method
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‣ Network: Deep Concave Curve

Idea: find a function g and use it to enhance the low-light input 𝐼𝐿

i.e. 𝐼
̂

𝐿 = 𝑔(𝐼𝐿)

We assume that g(·) should:

- Pass (0,0) and (1,1)

- Increase monotonically

- Be spatially shared

- Be concave

Independent 𝑔 for each color channel,

i.e.,  𝑔𝑅, 𝑔𝐺 , 𝑔𝐵

Method



‣ Training Strategy:  Asymmetric Self-supervised Alignment

Idea: employ high-level vision models as guidance

Existing strategies:

- Discrepancy metrics

- Adversarial learning

We use:  Cross-domain self-supervised pretext tasks

79

Bring extra semantic supervision, which can mislead 

our model and make training hard to converge

Method
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‣ Training Strategy:  Asymmetric Self-supervised Alignment

Pretrained and fixed-weight feature extractor

Step 1. Train a pretext head on normal light images

Step 2. Train deep concave curve with fixed-weight head on low-light images

Method
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‣ Training Strategy:  Asymmetric Self-supervised Alignment

Pretrained and fixed-weight feature extractor

Step 1. Train a pretext head on normal light images

Step 2. Train deep concave curve with fixed-weight head on low-light images

Method
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‣ Training Strategy:  Asymmetric Self-supervised Alignment

Pretrained and fixed-weight feature extractor

Step 1. Train a pretext head on normal light images

Step 2. Train deep concave curve with fixed-weight head on low-light images

Method
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‣ Training Strategy:  Asymmetric Self-supervised Alignment

Pretrained and fixed-weight feature extractor

Step 1. Train a pretext head on normal light images

Step 2. Train deep concave curve with fixed-weight head on low-light images

Method
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‣ Training Strategy:  Asymmetric Self-supervised Alignment

Pretext task:  rotated jigsaw puzzles

First rotate the input image by random angles, then apply 3×3 jigsaw shuffling 

and ask the network to recognize the permutation

Method
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‣ Network + Training Strategy:  Self-Aligned Concave Curve (SACC)

Train: given a pretrained normal-light downstream model, use its feature 

backbone to train our deep concave curve

Test: enhance the input image and apply the downstream model

Properties:

- Blind to both normal and low-light annotations

- Does not need to adjust the downstream model

Method
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‣ Network + Training Strategy:  Self-Aligned Concave Curve (SACC)

Can SACC solve color bias?

Yes, SACC has independent curves for each color channel.

How to solve camera noise?

Improving the robustness to noise is much easier than noise removal.

We adopt pseudo labeling to adapt the downstream model.

This advanced version is called SACC+.

Method
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‣ Analysis: Why Self-Supervised Alignment?

Method
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‣ Analysis: Why Deep Concave Curve?

Method



89

‣ Analysis: Why Deep Concave Curve?

Method
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‣ Analysis: Why Deep Concave Curve?

Method
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‣ Analysis: Why Deep Concave Curve?

Method
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‣ Analysis: Why Deep Concave Curve?

Method



93Experiments

• Settings

- Low-light Object Classification

- Dark Face Detection

- Low-light Action Recognition

- Optical Flow Estimation in the Dark

- Subjective Human Vision



94Experiments

• Low-light Object Classification



95Experiments

• Dark Face Detection



96Experiments

• Dark Face Detection



97Experiments

• Low-Light Action Recognition



98Experiments

• Low-Light Action Recognition



99Take Home Messages

• Low-light condition: low visibility, low contrast, intensive noise

• Challenges: visual unpleasure (Humans), system failure (Machines) 

• Human Vision: Robust Enhancement

- Structural deep prior → deep Retinex

- Dataset and benchmarking

• Machine Vision: Joint Enhancement and Downstream Tasks

- Joint high-level and low-level adaptation

- Self-aligned Concave Curve



Jiaying Liu

Peking University

liujiaying@pku.edu.cn
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