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Smart camera = ML algorithms applied images?

Object detection
Face beautification

[Leyvand et al., 2006]



Camera may not capture visual signal for ML system

Images are too dark for ML to detect this biking person

One frame A frame 2s later

Video from a fatal car crash



Separate design may fail

ML algorithm



Machine learning embedded in the camera

A real smart camera system

ML algorithm



• Capturing: multiple source 
fusion

• Processing & editing

• Training data: synthetic data

• Network: combine classic 
image processing algorithm 
and machine learning
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Image in lowlight

What is this object?



by our night sight 
algorithm

"Handheld Mobile Photography in Very 
Low Ligh“, SIGGRAPH Asia 2019

Flower



Good lighting

Lowlight

Not enough photons in lowlight



Exposure bracketing

[Debevec et al., 2007]
[Gallo and Sen 2016]



From long exposure to burst photography

Long-exposure

Motion blur

Burst photography
burst of short exposed frames



HDR+

S. Hasinoff et al, "Burst photography for high dynamic range and low-light imaging on mobile cameras “, SIGGRAPH Asia 2016.



Night sight

O. Liba, et al., "Handheld Mobile Photography in Very Low Ligh“, SIGGRAPH Asia 2019.



Multiple captures also helps to remove reflection

Images with reflection Reflection-free image

T. Xue, et al., "A Computational Approach for Obstruction-Free Photography“, SIGGRAPH, 2015.



2 frames from stereo camera

Reflection removal using stereo input

Output

S. Niklaus et al., "Learned dual-view reflection removal“, WACV, 2021.



Flash / Non-flash Photography

G. Petschnigg et al., “Digital Photography with Flash and No-Flash Image Pairs”, SIGGRAPH 2004.



Jian Wang, Tianfan Xue, Jonathan T. Barron, Jiawen Chen

ICCP 2019

Stereoscopic Dark Flash for Low-light Photography

RGB Merged resultIR (infrared)



Event camera



Use event camera to recover high-speed motion

S. Tulyakov et al., “Time Lens: Event-based Video Frame Interpolation”, CVPR 2021.



Depth and debluring from DP images

Input DP image All-in-focus imageDepth map

Near

Far

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image 

S. Xin, N. Wadhwa, T. Xue, J. T. Barron, P. P. Srinivasan, J. Chen, I. Gkioulekas, R. Garg

ICCV 2021

DP sensor

Regular sensor
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An input/output pair is needed for ML training

Noisy input Denoised output

Neural network

TODO: Practice. 



Ground truth output are hard to label

Image Credit: https://github.com/tzutalin/labelImg

Labeling detection is easy.
few seconds / image

Label denoising is hard:
few hours / image

Image Credit: Nik Collection



Capturing ground truth requires a lot of manual efforts

Image Credit: [Chen et al. CVPR, 2018]

Collecting ground truth for denoising (<100/day)



Devices differences

Mobile cameraDSLR Webcam



<100 images / day
No. of images uploaded to internet: 

3,000,000,000,000 images / day

by Leon Seibert, Unsplash

Can we use images on the web



Apply degeneration to images on the web

Synthesize 
degeneration

Processing
network

Clean images from web Degenerated images Recovered clean image

How to generate realistic degeneration?

Input/output pairs



Raw image sRGB image

Camera pipeline

Noise Noise model

Real noise does not directly apply to sRGB



“Unprocessing”

Synthesize raw from sRGB

“Reprocessing”

Demosaic

Remosaic

Add noise

T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, J. T. Barron, “Unprocessing images for learned raw denoising”, CVPR, 2019



Noisy input N3Net Ours

Unprocess improves the image quality 



Simulate realistic rain drops

Yang et al., “Deep Joint Rain Detection and Removal from a Single Image”, 2017 



Sometimes, it is important to understand 3D geometry
in the simulation

Kim et al., “Single Image Reflection Removal with Physically-Based Training Images”, CVPR 2020 



We can even resort to rendering engine 

S. Niklaus et al., "Learned dual-view reflection removal“, WACV, 2021.



We can even resort to rendering engine 

S. Niklaus et al., "Learned dual-view reflection removal“, WACV, 2021.



Lens flare



Light

source

Sensor

Ideal

Flare formation

Scattering

Reflection

Wu et al,. “How to Train Neural Networks for Flare Removal”, ICCV 2021
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Representing point operation: 3D LUT 

https://www.bromptontech.com/what-is-a-3d-lut/ 

https://www.bromptontech.com/what-is-a-3d-lut/


Learning to enhance -> Learning 3D LUT

H. Zeng et al., “Learning Image-adaptive 3D Lookup Tables for High Performance Photo Enhancement in 
Real-time”, T-PAMI, 2020



Learning 3D LUT significantly reduces the time cost



Image Enhancement: Using color tran. and global curve

Song et al, “StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement”, ICCV 2021



Direct prediction is expensive

Input Stylized output

Style image

Neural network

[PhotoWCT: Li et al., ECCV 2018]
[WCT2: Yoo et al., ICCV 2019]
[LST: Li et al., CVPR 2019]

All of them are OOM when applied to 4MP 
image



Can we approximate it using tone curves?

Input Stylized output



Model a set of tone curves as bilateral grid

J. Chen, A. Adams, N. Wadhwa, S. Hasinoff, “Bilateral guided upsampling”, 2017
M. Gharbi, J. Chen, J. Barron, S. Hasinoff, F. Durand, “ Deep Bilateral Learning for Real-Time Image 
Enhancement”, SIGGRAPH 2017

Bilateral grid



Style transfer using a set of tone curves

InputOutput

Apply

Low resolution: 256x256

Full resolution: 4Kx3K

Tone curves baked in bilateral grid

TODO: Add a ref. 

X. Xia, M. Zhang, T. Xue, Z. Sun, H. Fang, B. Kulis, J. Chen, “Joint bilateral learning for real-time universal photorealistic style transfer”, ECCV 2020



Performance

Latency

User study of visual quality





Results on 12MP image



HDRnet tonemapping

TODO: Add a ref. 

M. Gharbi, J. Chen, J. Barron, S. Hasinoff, F. Durand, “ Deep Bilateral Learning for Real-Time 
Image Enhancement”, SIGGRAPH 2017



Used by Google Tensor Chip



Denoising using spatially varying kernels

Jiang et al, “Fast and High-quality Image Denoising via Malleable Convolutions”, ECCV 2022



We can even learn to reorder different modules

K. Yu et al, “ReconfigISP: Reconfigurable Camera Image Processing Pipeline”, ICCV 2021

Basic camera modules

Learn a task-specific pipeline



We can even learn to reorder different modules

K. Yu et al, “ReconfigISP: Reconfigurable Camera Image Processing Pipeline”, ICCV 2021

Basic camera modules

Different task may need different pipelines



Future smart cameras
research



Simulation is important to collect training data

Image credit: Tesla AI Day



Is there Isaac Gym for computational photography?

Issac Gym by NVIDIA, for robotic algorithm design



Computational 
Photography 
and Hardware

Image credit: https://bit.ly/2mmFtKP

https://bit.ly/2mmFtKP


Tseng et al., “Neural nano-optics for high-quality thin lens imaging”, 2021

Joint lens and algorithm design



Camera is not only for better selfies

First black hole image
[image credit: NASA]

VLBI image formation

K. Bouman, “Computational Imaging for VLBI Image Reconstruction”, CVPR 2016



How VR may impact us



Can we capture more 3D content using our cameras?

B. Mildenhall et al., “NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV, 2020



Can cameras be as good as our eyes?

https://uxdesign.cc/augmented-reality-device-types-a7668b15bf7a 

https://uxdesign.cc/augmented-reality-device-types-a7668b15bf7a


Can our algorithms be as fast as to deal with 8K60fps?



AIGC and 
Computational 
Photography



Where is the boundary between editing and synthesis

https://www.bilibili.com/video/BV16M4y1q7B5 

Which one is real, which one is fake?

https://www.bilibili.com/video/BV16M4y1q7B5


Where is the boundary between editing and synthesis

Robin et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 22.



Where is the boundary between editing and synthesis

Generated by Midjourney v5: https://petapixel.com/2023/03/17/midjourney-v5-creates-photorealistic-images-and-even-does-hands-correctly/

https://petapixel.com/2023/03/17/midjourney-v5-creates-photorealistic-images-and-even-does-hands-correctly/


Where is the boundary between editing and synthesis

A. Efros and W. T. Freeman, “Image quilting for texture synthesis and transfer”, CG 2001



Do we even need a powerful lens?

Cameras become more powerful in past 10y

Only less powerful camera hardware is needed in the future?



Gap between 
academic 
research and 
industrial design



Industrial not only care quality, but also speed & power

SoC consumer portable power consumption

Yahia Benmoussa, “Performance and Energy Consumption Characterization and Modeling of Video Decoding on Multi-
core Heterogenous Mobile SoC and their Applications”



High PSNR != Better Image

L., Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." CVPR. 2017.



Diff users may even have diff preferences

3 experts gave very different tunings
Image credit: Adobe 5K



It is even hard to describe what is best

Some photographers don’t like over-

smoothed image, and call it “like oil 

painting”

Some photographers don’t like HDR 

image, and call it “Cartoon-look”

http://barney-streit.squarespace.com/blog/2013/6/5/good-hdr-bad-hdr 

http://barney-streit.squarespace.com/blog/2013/6/5/good-hdr-bad-hdr
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